FYI: MCW 480 not found in the Galaxy Map, the only MCW found is #1182 over 7,000 LY out.
ARTICLE:
http://gizmodo.com/an-infant-stars-neighborhood-is-brimming-with-lifes-pre-1696985525
SOURCE:
NATRURE
http://www.nature.com/nature/journal/v520/n7546/full/nature14276.html
Four hundred and fifty five light years away sits a newborn star that bears striking resemblance to our Sun. It’s awash in a sea of complex organic molecules which could, one day, coalesce to form proteins, nucleic acids, even life itself.
4.6 billion years ago, our baby Sun was also surrounded by a cloud of gas and dust. We know from looking at comets—which are like artifacts from the solar system’s formation—that this “protoplanetary disk” was filled with water and organic molecules. Now, using a powerful telescope that’s able to detect tiny wavelengths of radiation emitted naturally from molecules in deep space, Harvard astronomers have learned that the disk surrounding the million-year-old star MWC 480 is likewise rich in life’s simple precursors, containing enough methyl cyanide to fill Earth’s oceans.
“Studies of comets and asteroids show that the solar nebula that spawned our Sun and planets was rich in water and complex organic compounds,” said Harvard astronomer Karin Öberg, lead author of the new study which appears this week in Nature. “We now have evidence that this same chemistry exists elsewhere in the universe, in regions that could form solar systems not unlike our own.”
Astronomers have known for some time that interstellar clouds are very efficient factories of organic molecules. Cyanides, and particularly methyl cyanide, are important precursors to the amino acids that form proteins. But until now, we’ve only observed these lonely organics in the cold, dark depths of interstellar space, and it’s been unclear whether they could withstand the powerful radiation emitted by a young star.
ARTICLE:
http://gizmodo.com/an-infant-stars-neighborhood-is-brimming-with-lifes-pre-1696985525
SOURCE:
NATRURE
http://www.nature.com/nature/journal/v520/n7546/full/nature14276.html
Four hundred and fifty five light years away sits a newborn star that bears striking resemblance to our Sun. It’s awash in a sea of complex organic molecules which could, one day, coalesce to form proteins, nucleic acids, even life itself.
4.6 billion years ago, our baby Sun was also surrounded by a cloud of gas and dust. We know from looking at comets—which are like artifacts from the solar system’s formation—that this “protoplanetary disk” was filled with water and organic molecules. Now, using a powerful telescope that’s able to detect tiny wavelengths of radiation emitted naturally from molecules in deep space, Harvard astronomers have learned that the disk surrounding the million-year-old star MWC 480 is likewise rich in life’s simple precursors, containing enough methyl cyanide to fill Earth’s oceans.
“Studies of comets and asteroids show that the solar nebula that spawned our Sun and planets was rich in water and complex organic compounds,” said Harvard astronomer Karin Öberg, lead author of the new study which appears this week in Nature. “We now have evidence that this same chemistry exists elsewhere in the universe, in regions that could form solar systems not unlike our own.”
Astronomers have known for some time that interstellar clouds are very efficient factories of organic molecules. Cyanides, and particularly methyl cyanide, are important precursors to the amino acids that form proteins. But until now, we’ve only observed these lonely organics in the cold, dark depths of interstellar space, and it’s been unclear whether they could withstand the powerful radiation emitted by a young star.