Discussion What is the most efficient way to crowdsource the 3D system coordinates

TGC should collect all usefull data for 3rd party tools.

And no, for this Beta there is no reason to collect a massive amount of data outside of fine tuning the tools to be good enough for release.

And the real questions for FD is if the galaxy will be redone AFTER Gamma. For example Gamma could be just another beta, where we keep our ships and progress, but where the systems themselfs get regenerated.
 
TGC should collect all usefull data for 3rd party tools.

And no, for this Beta there is no reason to collect a massive amount of data outside of fine tuning the tools to be good enough for release.

And the real questions for FD is if the galaxy will be redone AFTER Gamma. For example Gamma could be just another beta, where we keep our ships and progress, but where the systems themselfs get regenerated.

My understanding is that gamma is just early release with bug fixing still ongoing. There shouldn't be any changes to the system generation after gamma starts unless some major bug requires it. I'd be willing to take the risk and start gathering data then.
 

Michael Brookes

Game Director
TGC should collect all usefull data for 3rd party tools.

And no, for this Beta there is no reason to collect a massive amount of data outside of fine tuning the tools to be good enough for release.

And the real questions for FD is if the galaxy will be redone AFTER Gamma. For example Gamma could be just another beta, where we keep our ships and progress, but where the systems themselfs get regenerated.

We're aiming not to have to regenerate the galaxy after gamma release. Individual systems might be changed for fixes, but not the system as a whole. It depends on what comes up though.

Michael
 
May I ask a really dumb question? Why we are doing this? For what purpose are we trying to determine the star coordinates?

If it is just for the intellectual exercise and for fun, then fine. But given that FD seem to have shown a willingness to enhance the GM into a major tool (as witnessed by the recent changes) including providing a route planning capability (albeit embryonic at this stage), what do we need these coordinates for?

Don't want to rain on any parade - but just wondering.

I started writing my app, after buying a shed load of items that nearly wiped me out in cash, first jump was ok, second jump was outside of my range. I had to do 3 jumps between system1 and system2 before I had burnt enough fuel to make the long jump back to where I wanted to sell the items.

So the goal I'm going for is route planning with fuel consumption and Profit with Fuel prices included.

When I have a good set of co-ordinates I run a calculation on the system to find nearby systems and their range.

Example from Beta2 data:
i bootis [-22.375 34.84375 4]

--Local Systems : asellus primus 8.21Ly, aulin 3.53Ly, bd+47 2112 8.89Ly, dahan 10.33Ly, eranin 5.48Ly, lhs 3006 8.12Ly, lp 98-132 9.9Ly,
morgor 10.57Ly, opala 6.15Ly, rakapila 9.14Ly, styx 4.04Ly

I can then use the nearby systems to route plan.

Example again from Beta2 data
D:\drive\sourcecode\Elite>elite -xroute chiherc wyrd

opala 7.73Ly=> aulin 7.8Ly=> bd+47 2112 7.16Ly=> wyrd 5.12Ly

It would work without the co-ords but I wouldn't be able to find the marginal cases where a system is just at the edge of my range when I'm on 50% fuel. Shortcutting the original path.

My next task is to send a message to my Pebble watch with the route on it, with up and down buttons so I can step through the route.
 
May I ask a really dumb question? Why we are doing this? For what purpose are we trying to determine the star coordinates?

If it is just for the intellectual exercise and for fun, then fine. But given that FD seem to have shown a willingness to enhance the GM into a major tool (as witnessed by the recent changes) including providing a route planning capability (albeit embryonic at this stage), what do we need these coordinates for?

Don't want to rain on any parade - but just wondering.

I'm in the same boat as JesusFreke
To be honest, for me, it's mostly just for the fun of it :). I know the data is useful for various tools and all that, but I don't really use those tools much.

And apparently I just like to fool around with numbers :cool:



I've done a buttload more testing (more to come) to try and figure out how to proceed, what we need, and what we don't really need, to get "good enough" data.

From earlier - Doing 100K random reference system selections (and calculating a float32 rounded distance to 2dp) - and a p0.
Doing the subset combinations of all ref systems ( C(3, numref) * (numref-3) tests)
Picking the p0 candiate with the smallest RMS gives the following.
Code:
#ref
systems  errors   Errors
  5     3306    3.31%
  6     1754    1.75%
  7     1327    1.33%
  8     1165    1.17%
  9     1071    1.07%
 10     1018    1.02%
Much better than I initially thought.
And the diminishing returns beyond 6 ref systems is obvious (but honestly - even with 5 ref systems - the error rate is imo surprisingly low)

I wanted to see the relation/correlation between the RMS values and whether we got a correct or incorrect p0 value - "Just because" :p
Here's a picture of that (not posting all the numbers :eek:)

This was done for a 10 million run btw (instead of 100K) with 5 ref systems.
That takes awhile... was a one off - "Just because" :cool:
Click it to be able to read it
View attachment 526
The graph on the right is simply a zoomed image of the one on the left.

A couple (of perhaps obvious) observations:
- If RMS ever gets above 0.0049 (which in itself only had 5 out of 10M!) then we can be sure we don't have the correct coordinate
- Unfortunately having a RMS below that value, doesn't really tell us anything - Except that there's a 96.7% chance it's correct.

-----

I then set out to see if we could improve this a bit.
By doing a cube search around the found p0 - using lowest RMS as the determinator for picking the final p0 value.

I only did this for the incorrect values.
So keeping the RMS graphs above in mind, it's definitely possible that a cube search on a p0 that is actually correct, could end up returning a non-correct p0 (as RMS is used as determinator - and not reverse distance check)

But for the incorrect values the cube search was indeed able to find a few more correct values.
It's not really impressing though...
Here's another picture (can't be rarsed to format all those numbers to look nice here)
Click it to be able to read it
View attachment 527

I did the cube search for various radii of the cube. 1 to 8.
A radius of 8 - means a cube 2*8+1 (17) 1/32th LY across - or a bit over half a LY cubed searched (That's 4913 coordinates checked)


Observations:

For 5 ref systems the cube search is able to find a candidate with a better RMS value in 53.8% to 68.1% of cases.
Of those better candidates - Only 26.5% to 41.7% where actually correct. The rest still didn't match the p0 which we where trying to find.

Also: A cube with radius of more than 3 (maybe 4) is nearly pointless.
Which to me indicates that while the initial incorrect value, is well incorrect, it's not wrong by much (in an overwhelming amount of cases)

So yeah - a cube search does eek out a bit more mileage - But definitely not as much as I expected (coming from the mindset it ought to be able to nail it - with radius of 8 for sure...)

It gets "worse" with 6 ref systems.
Cube search improves even less here - Of the coords with better RMS found, only 10.3% to 20.8% are actually correct.


In hindsight that's actually not too surprising (but always good to see the numbers confirming it) - As those p0 cases we are trying to improve on, are getting more and more "degenerate" as our number of ref systems increase.

As the ref systems themself (via trilateration) are able to nail almost all of them - and those they can't, well it's because the coords/distances are aligned such that it's very hard to do it - Thus cube search is put in a worse and worse situation, with the "left overs" from the regular trilateration, and thus improves less and less.


-----------


Next up:

Instead of using RMS to pick the best candidate from the cubesearch - I'm going to do the reverse distance check instead.
I'm going to record how many coords in the cube will pass that reverse distance check (I expect multiple often will - due to only 2dp).
I'll then use RMS to pick one p0 among just those that pass the reverse distance check - and then check to see if that value is indeed correct.

I honestly don't expect to see much of a difference in the results (error percentage) - But I'm kinda interested in seeing just how many candidates in a cube search will actually pass the reverse distance check.

Which will put some kind of number on how impossible (literally) it will be for some sets of distances to determine the correct p0.


---

PS: Are anyone actually interested in all these numbers?
I run them for my own sake - To convince myself what variables needs tweaking to get the best result.
And I share them here to save someone else from the trouble - or catch me in making a mistaken conclusion.
But am I wasting my time with that? (takes a bit to make these posts)
 
Last edited:

wolverine2710

Tutorial & Guide Writer
You are CERTAINLY NOT wasting your time with that (posting). Perhaps it gives the other math gods (ok commanders) some ideas. I totally like all the work you are putting in this. Keep up the good work.

Note: Haven't received a csv file from Michael Brookes at this point. Some more patience is needed I'm afraid ;-)
 
One constraint I can think of is that we should ensure that we get enough distances for a given star such that if any 1 distance is removed, it still results in the same single matching coordinate after searching the candidate region. I think this would ensure that there is enough redundancy in the data to be able to detect 1 incorrect distance. I'm not sure how onerous a requirement that would be though.

Whops brainfart.

The erroneous system is included when calculating the RMS - D'oh.

Disregard the below :eek:

This actually happens automatically with the test runs I've been doing (see post above)

Due to running all subset combinations - several of those won't have the erroneous distance included.
And as such will give a better candidate (based on RMS).
And thus when comparing candidates from all combinations afterwards, one with a high RMS (due to wrong distance), will not be selected.

In fact all (possible) combinations of removing distances is run - so it will catch any amount of wrong distances.

The possible exceptions being, if the wrong distance is just 0.01, it *could* happen that this could give a better RMS value (would be rare though) - But in that case the candidate would be really good anyhow - and a subsequent cube search could improve it (and perhaps even identify the wrong distance(s) - situation permitting)


It does point out where one could insert that particular test though.

Calculate the RMS for each combination of ref systems (not involved in the trilateration calculus) - and see if any abnormal values pop out - pointing at one or more distances being wrong.

This starts getting computationally very expensive if the number of ref systems is high though...
(running all possible combinations...)
 
Last edited:
First, using accurate route planning for each possible trade route was very expensive.

There are a number of fairly obvious algorithmic tricks you could use to improve that:

1) Pre-calculate all of the possible routes between pairs of populated systems, and store them all somewhere. Or just store the route costs, whichever you prefer. This means that you just do a lookup when you need to know such a value.

2) Use Dijkstra's pathfinding algorithm to calculate *all* paths to *all* populated systems from each given starting point, rather than using A* to calculate one path at a time. This is more efficient in aggregate to complete point 1, above.

3) Pre-calculate the fuel-efficient link set (using the simple algorithm in my Python scripts) before starting the pathfinding. This makes pathfinding easier, and therefore quicker.

4) Use a min-heap instead of explicitly sorting lists by distance. This is something I *don't* do in my Python scripts, but I would if I rewrote them in a more efficient language (where manually manipulating data can be faster than just calling a generic sort function).

5) If you're searching for trades from a given starting point, you can (as an alternative to pre-calculating all routes) use Dijkstra to define the order in which you evaluate candidate stations. This will reveal the closer stations' potential more quickly, giving the user the solution they want sooner (even though the code may still be working).

6) Further to point 5, you can extend the idea by performing one pathfinding step for each possible starting point in turn, keeping the data structures in place. This provides useful solutions sooner when doing a global trade-route search.

HTH, HAND.
 
Still its even more efficient to just bypass Dijkstra, find good candidates and then do Dijkstra for details. Its NP hard to solve and while brute forcing 6 stations or 50 stations, it was beginning to crack with B2. It effectivly a "find all routes" problem. And currently I'm ruling out routes as early as possible by first finding the good 2 station routes, then just dropping anything that falls under a set treshold based on that average. Finding the best 2 station routes are trivial and will scale nicely with increasing numbers. The 3 station, 4 station and more will not. Dijkstra really only matter when a accurate time estimate is needed.

That said, I dont expect to find any gems in that data. B2 had the good trades pretty close together, and for the cases where a significant profit difference could be achieved, the time it would take to complete the route just offset the profit to biowaste levels.
 

wolverine2710

Tutorial & Guide Writer
Good news. Received partial SB3 list from Michael Brookes

Just received a PM from michael brookes. Haven't csv-ed it yet. Wanted to share it directly. Shown in the spoiler tag. It contains 755 coordinates. As far as I can see they are in the new 2dp format.

10 Canum Venaticorum 49975.63 41040.44 24098
10 Ursae Majoris 49985.03 41019.91 24065.91
16 c Ursae Majoris 49963.63 41026.84 24061.78
17 Crateris 50058 41029.13 24122.63
20 Leonis Minoris 49992.78 41024.41 24076.81
21 Draco 49924.97 41030.66 24113.09
24 Iota Crateris 50045 41047.66 24113.38
26 Draconis 49946 41009.91 24104.34
35 Draconis 49899.88 41036.75 24076.63
36 Ursae Majoris 49973.88 41017.94 24082
37 Xi Bootis 49980.78 41004.09 24114.81
41 Gamma Serpentis 49972.88 41011 24127.88
44 chi Draconis 49962.44 40997.38 24099.59
47 Cassiopeiae 49901.97 41013.56 24041.81
47 Ursae Majoris 49983.56 41026.19 24084.91
54 G. Antlia 50055.38 41009.47 24103.91
59 Virginis 49995.94 41039.09 24120.25
60 Tau Draconis 49856 41045.22 24070.88
61 Ursae Majoris 49985.56 41015.09 24096.31
61 Virginis 49999.81 41004.28 24118.66
66 Draconis 49820.28 41031.31 24088.94
68 Draconis 49833.53 41026 24089.03
70 Virginis 49990.94 41041.25 24120.47
Abrogo 50005.81 41001.75 24091.69
Acihaut 49966.5 41010.28 24101
Acurukunabogamal 50053.44 41009.66 24103.94
Adityaraguala 49977.91 40987.25 24085.03
Aegilips 50007.97 41013.94 24133.41
Aeneas 50039.41 41020.91 24129.94
Aganippe 49973.44 41028.81 24116.63
Agwe 49936.44 41032.53 24055.88
Akhenaten 49931.63 40992.84 24064.63
Aknango 49829.59 41015 24028.56
Al Mina 49999.44 41028.78 24091.75
Aladu Kuan Gon 49876.31 41009.66 24084.22
Alchita 50021.22 41014.28 24119.22
Alcor 49949 41056.91 24090.41
Algorab 50039.19 41047.31 24131.91
Alrai 49946.28 40997.31 24083.38
Ammapa 49869.75 41043.13 24061.72
Amun 50036.56 41017.19 24077.88
Anaiwal 49843.22 41031.34 24086.75
Andancan 49910 41028 24042
Andoe 49951.66 40986.06 24078.59
Anemoi 49923.63 41007.25 24106.56
Anete 50026.56 40998.16 24103.31
Aninohini 49865.38 40995.38 24072.63
Anlave 49959.63 40986.13 24084.16
Ansari 49900.5 41022.59 24060.28
Antevorta 50028.19 41024.31 24106.53
Antinica 50049.5 41047.31 24092.38
Anyanwu 50017.16 41008.09 24137.19
Ao Guang 49985.63 41025.03 24083.66
Ao Qin 49922.09 41031.78 24106.53
Ao Shun 49909.69 41007.59 24106.09
Apalai 50037.97 41036.06 24088.34
Apura 50026.81 41042.34 24110.41
Arcturus 49981.47 41019.16 24117.97
Arin 49986.06 40988.88 24096
Asellus Primus 49961.06 41025.88 24103.66
Ashtart 50003.5 41050.84 24108.28
Atarapa 50026.56 41008.56 24074.5
Atum 50034.97 41002.63 24110.59
Audhisatsuri 49877.13 41014.56 24084.06
Audusi 49869.28 41001.53 24083.91
Aulin 49965.31 41017.69 24109.75
Aulis 49968.53 41029.19 24093.56
Aurvandill 49830.34 41025.34 24022.22
Awabatamori 49874.22 41024.47 24069.41
Awngtei 49851.44 40995.22 24046.44
Azaladshu 50045.94 40995.34 24103.91
Baga 49874.69 41000.13 24059.75
Balmus 49896 40994.38 24052.94
Bast 49948.53 41001.16 24070.06
Batani 49850.97 41042.34 24078.47
Baudus 49916.91 41026.06 24074.03
BD+03 2279 50025.94 41029.13 24076.16
BD+03 2316 50029.72 41036.34 24077.13
BD+16 2404 49993.88 41030.19 24108.94
BD+26 2184 49998.22 41049.22 24083.94
BD+27 1739 50000.53 41027.78 24061.84
BD+29 2405 49978.72 41045.81 24110.5
BD+47 2112 49970.22 41018.47 24104.59
BD+55 1519 49968.06 41029.72 24088.41
BD+57 2595 49874.59 40983.75 24070.75
BD+63 1764 49871.75 41001.78 24076.66
BD+64 1452 49886.44 41010.69 24087.59
BD+65 1846 49924.69 40992.13 24079.47
BD+66 193 49927.47 40993.63 24054.78
BD+67 1409 49895.56 41001.06 24074.75
BD+71 1033 49880.88 41018.88 24074.06
BD+72 545 49936.63 41046.72 24064.78
BD+74 526 49936.34 41038.28 24075.75
BD+87 118 49926.41 41025.66 24067.25
BD-01 2784 50008.84 41042.78 24128.72
BD-18 3106 50033.47 41021.88 24107.06
Begou 49843.88 40983.19 24051.19
Belobog 49971.66 41038.78 24117.56
BF Canis Venatici 49976.75 41047.19 24101.94
Bhaguti 50026.69 41021.31 24123.94
Bhotega 49929.78 40999.5 24079.84
Bhotepa 49875.84 41020.97 24045.63
Binbeal 49812.13 40996.25 24053.88
Bingui 50044.13 41023.5 24100.38
Blata 49832.09 41006.72 24092.31
Blatrimpe 50014.13 40996.31 24089.13
Bogatiku 49858.38 41030.72 24092.44
Bolg 49977.09 41019.72 24107.13
Borom Caquit 50007.19 41054.56 24098.56
Bragurom Du 50002.44 41046.19 24098.47
Brahma 49998.28 41030.25 24122.66
Bugas 49997.59 41009.34 24107.84
Bumbo 49892.94 41020 24040.72
Bunda 50050.63 41002.97 24129.97
Buryacuan Wu 50052.53 41010 24129.63
Caeronthudti 50017.25 40999.91 24091.5
Caicius 50026.06 41033.03 24123.97
Caluayaksheper 49901.63 41006.56 24063.91
Candjinan 49841.75 41015.94 24036.31
Carnoeck 50020.97 40990.19 24106.31
Carnutenichuara 49856.53 41018.94 24085.53
Catuntinigi 49932.34 41015.78 24053.09
Cavashira 49813.94 41028.28 24070.03
Cavins 50012 40993.78 24097.94
CD-35 6972 50066.72 41019.22 24120.38
CE Bootis 49979.59 41014.38 24121.47
Cenil 50040.84 41030.44 24078.47
Chaac 49985.44 41048.22 24095.5
Chapoyo 49884.63 41019.47 24064.91
Chara 49854.53 40963.25 23980.19
49980.16 41011.66 24100.22
Chaxiraxi 49975.16 41051.53 24110.75
Chechehet 49878.44 41009.63 24077.09
Chelmen 49919.03 41032.78 24048.13
Chemaku 49907.44 40991.56 24094.47
Chi Herculis 49954.25 41024.72 24117.78
Chini 50037.75 41028.66 24073.53
Chongquan 49964.22 40998.19 24067.56
Chontantici 50034.81 41022.97 24126.84
Choujemait 49870.41 40988.06 24064.03
Ciguru 49902.59 40988.88 24096.09
Circios 49981.06 41039.5 24067.97
CM Draco 49949.31 41015.94 24107.16
Coelrind 49988.06 41020.28 24111.97
Coriccha 49970.59 41004.94 24112
Corioskeh Tryth 49866.75 41018.34 24081.34
CPD-23 501 50045.59 41020.31 24105.63
CR Draco 49935.53 41032.44 24109.38
Cuages 49847.22 41006.72 24090.09
Cybele 50018.13 41039.47 24130.03
Czernovale 50025.53 41022.53 24124.5
Dagaz 50015.16 41040 24120.31
Dahan 49965.25 41026.78 24101.81
Dakantjarini 49891.72 41047.97 24072.94
Darahk 49920 41012 24068
Demeter 49929.66 41025.81 24112.56
Denebola 49996.09 41018.91 24101.5
Dierfar 50058.38 41023.72 24115.81
Difu 49950.59 40986.44 24077.13
Divja Mu 49892.69 40998.44 24088.19
Djedet 49892.16 41007.81 24082.69
Doris 49946.13 41054.03 24091.63
DT Virginis 49991.94 41020.03 24111.22
Duamta 49987.19 40991.63 24098
DX 799 49962.03 40997.31 24087.09
DX Cancri 49987.91 40991.31 24095.44
Dyaushis 49934.94 40993.38 24063.22
EGGR 431 50016.69 41021.75 24076.59
Egovedunuvitra 49867.63 41008.19 24098.31
Ehlangai 49933.47 41020.16 24058.88
Eme 50018.72 41011.22 24109.03
Enumclawilya 49868.13 41000.25 24068.97
Eranin 49962.16 41021.53 24103.81
Eravarenth 50051.84 41006.84 24132.47
Erlaza 50013.25 41007.59 24135.38
Eta Corvi 50021.72 41028.03 24123.78
Eta Draconis 49915.47 41045.28 24102.06
Etznabihik Mangk 50039.13 41047.38 24111.44
Evergreen 49898.31 41010.34 24101.69
Exbeur 49949.84 41012.84 24071.34
FAUST 2688 50047.5 41036.44 24093.53
Feng Huang 50059.53 41025.13 24084.56
Fianna 50013.56 41012.34 24116
Fionn 50017.5 40994.31 24082.25
Flousop 49983.38 41001.81 24109
FN Virginis 49992.56 41009.69 24111.16
Friggirawi 49872.78 41023.31 24085.13
Fu Haiting 49882 41014.47 24061.56
G 113-20 50003.78 40995.09 24084.25
G 121-8 49994.19 41043.75 24094.41
G 123-49 49966.09 41051.88 24090.22
G 14-6 49998.5 41015.38 24114.06
G 146-5 49977.63 41038.94 24061.97
G 175-42 49970.34 40987.5 24075.53
G 180-18 49956.03 41025.69 24124.03
G 181-6 49964.69 41005.31 24119.06
G 203-47 49966.66 40999.25 24112.09
G 224-46 49929.75 41045.34 24092.28
G 239-25 49962.31 41010.81 24098.31
G 250-34 49957.72 41010.91 24060.5
G 65-9 49994.53 41027.34 24125.34
G 89-32 49995.28 40989.59 24088.31
GD 140 49989.84 41034.56 24091.69
Gendalla 49997 40994.97 24099.47
Gendini 49862.44 41033.5 24070.44
Gera 49896.19 40996.69 24071.41
Gliese 3371 49967.28 40997.97 24066.69
Gliese 9843 49878.75 41018.59 24044
Gomm Crua 49943.53 41012.22 24053.84
Gong Gu 49896.09 41011.19 24100.31
GQ Virginis 49997.16 41012.31 24128.28
Grabri 49887.28 41028.66 24089.22
Groombridge 1618 49982.66 40997.63 24095.66
Guangul 49957.5 40999.31 24102.72
Gunnovii 49870.59 41022.25 24103.28
Guy 50011.72 40999.25 24112.38
h Draconis 49945.16 41014.56 24101.09
Hach 49911.94 40998.28 24096.75
Hadad 49994.88 41042.84 24125.59
Haeditjaray 49821.94 40999.03 24040.44
Hagalaz 49934.41 41030.16 24116.09
Haidjaram 49858.69 41042.28 24080.81
Hambula 49945.34 40991.13 24102.5
Haokah 49962.81 41022.63 24057.69
Hared 49887.88 41007.75 24085
Haribaluayai 49834.63 41015.31 24091.06
Havat 49878 41000.31 24065.28
HDS 1879 49946.88 41054.19 24087.91
Heheng De 49865.66 41016.72 24095.38
Helios 50017.34 41027.19 24093.72
HIP 105557 49871.47 41026.22 24059.31
HIP 107457 49868.75 41013.34 24065.69
HIP 109479 49857.5 41014.88 24056.5
HIP 110773 49864.63 41031.38 24044.31
HIP 111496 49848.25 40998.72 24057.47
HIP 113477 49863.59 41004.78 24052.53
HIP 113905 49844.69 41021.94 24036.5
HIP 114099 49831.72 41011.66 24035.66
HIP 114769 49829.5 40998.56 24037.66
HIP 2422 49881.78 41016.34 24040.63
HIP 2453 49874.09 41001.5 24037.16
HIP 4907 49916.69 40994.63 24058.5
HIP 85887 49874.66 41054.91 24073.63
HIP 91906 49876.91 41042.19 24071.41
Hlocidirus 50015.97 41004.78 24075.22
Hlooyn 49987.16 41051.22 24078.16
Holiacan 49933.75 41052.34 24083.53
HR 3862 50029.34 41003.09 24094.97
HR 3991 50056.81 41036 24084.41
HR 4979 50033.28 41013.03 24142.75
HR 7925 49880.47 41006.06 24092.81
HR 8423 49879.63 41033.25 24049.47
HR 8472 49866.16 40986.13 24078.13
HR 8474 49887.03 41006.31 24068.88
Hsien Baji 49935.81 41005.22 24061.38
Hun Banja 49900.56 41001.91 24044.59
Huokang 49972.81 41020.47 24079.72
Hyperion 49933.81 40992.5 24088.28
i Bootis 49962.63 41019.84 24109
Igororai 49808.75 41015.75 24033.41
Ikpenones 49945.63 41016.56 24059.91
Issin 49939.81 41041.31 24062.16
Istanu 49987.06 41040.16 24106.28
Ithaca 49976.91 41029.94 24095.72
Jaitu 49882.84 41006.75 24087.69
Janjak 49863.03 41001.03 24033.59
Jeidrungaragototo 49839.5 41009.22 24085.75
Jetes 49843.78 41001.28 24045.69
Jok Islese 50055.16 41036.56 24114.5
Jolangen 50016.59 41014.31 24140
Juipedun 49894.66 41024.75 24043.63
Jula Oh 49801 41029.78 24046.81
Jun 49859 41014.22 24101
Jungkurara 49823.31 41007.66 24062.94
K Camelopardalis 49939.78 41011.63 24061.53
Kaal 49966.66 41051.72 24083.41
Kaha'i 49977.97 41045.81 24083.19
Kali 50018.59 41042.38 24076.16
Kamchaultultula 49902.94 40986.63 24090.56
Kanati 50059.13 41031.19 24085.53
Kanos 50026.38 41038.66 24092.34
Karovices 49882.56 40991.94 24090.13
Kassi Hua 49884.84 41020.81 24042.94
Katae 49957.09 41046.22 24093.88
Kato 49803.97 41011.31 24084.22
Keiadjara 49870.88 41013.91 24048.41
Keian Gu 49921.28 41007.47 24060.94
Keling 49851.75 41046.94 24066.91
Keries 49966.09 41012.22 24117.59
Khernidjal 49949.06 41055.56 24097.34
Kholedo 49889.91 41018.56 24097.84
Khong Qin Gu 49882.81 41005.19 24081.88
Kishia 49877.06 40990.97 24057.28
Kokobujundji 49862.72 41044.81 24085.84
Kokoto 50024.16 41025.5 24133
Kongi 49835.78 40999.25 24059.88
Korubu 49898.47 41024.06 24096.22
Kotaition 49884.16 41020.5 24068.66
Krumine 49830.09 41002.53 24025.97
Kuikian Batji 49915.34 41052.31 24065.97
Kumana 50057.28 41015.06 24082.44
Kunapalanezti 49866.88 41045.69 24070.31
Kunbuluan 49894.91 41046.69 24074.13
Kungati 49861.5 40998.25 24069.22
Kurngali 49855.19 41022.34 24056.22
Kurui Gubi 49951.19 41024.34 24078.75
Kurunmindjuk 49918.75 41037.25 24087.22
Kushentinoni 49850.28 41009.47 24047.44
Kwakamitreyja 49895.16 41008.06 24080.63
Kwamennero Kojin 49915.56 41027 24052.56
Labed 49898.13 41017.31 24045.09
Lakluit 49883.31 41010.13 24090.94
Lalande 18115 49981.16 40999 24090.59
Lalande 22954 50027.81 41041.97 24120.22
Lalande 29917 49958.47 41007.16 24100.44
Lalande 30699 49920.66 41033.97 24094.13
Lalande 37923 49900.88 41023.94 24076.84
Las Xenangaresti 49856.59 41018.59 24080.25
Latucairhemaiabi 49816.09 41012.38 24049.63
LAWD 17 49983.16 41024.78 24065.31
LAWD 52 49932.72 41046.81 24078.44
LDS 2314 49968.5 41029.56 24073.13
LDS 413 50038.66 41017.41 24135.84
Lei Ta Tetona 50004.13 41000.44 24092.72
Leng Wanjadimuru 49851.09 40983.78 24071.63
LFT 1072 49939.09 41028.72 24081.75
LFT 1421 49939.53 41003.56 24117.59
LFT 1446 49946.19 41003.25 24097.06
LFT 1748 49941.63 40986 24089.88
LFT 424 49970.53 40993.81 24067.97
LFT 601 50011.66 41009.81 24070.25
LFT 625 50035.22 40993.72 24092
LFT 682 50017 40988.19 24106.47
LFT 698 50012.25 41011.75 24092.38
LFT 709 50019.69 41011.16 24095.53
LFT 820 49997.34 41039.5 24091.44
LFT 824 50030.97 41018.72 24114.72
LFT 859 49997.56 41016.47 24103.28
LFT 880 49962.19 41016.41 24086.66
LFT 90 49955.78 40984.06 24085.19
LFT 926 50036.03 41002.69 24135.22
LFT 945 50012.5 41038.91 24121.41
LFT 992 49977.44 41027.59 24105.69
LHS 1065 49933.28 41000.84 24073.25
LHS 1101 49930.53 40994.38 24071.53
LHS 1167 49919.09 40993.94 24061
LHS 140 49950.47 41001.19 24081.94
LHS 1505 49934.75 41003.81 24060.91
LHS 1663 49944.47 41003.25 24064.09
LHS 1882 49968.56 41006.38 24056.31
LHS 1923 49966.41 41012.84 24056.03
LHS 1951 50002.88 40991.63 24083.63
LHS 1963 49984.56 40999.09 24080.69
LHS 2037 50018.78 40992.25 24090.5
LHS 207 49937.16 41013.66 24059.19
LHS 2088 49961.69 41010.72 24076.66
LHS 2123 49928.47 41027.41 24060.25
LHS 215 49964.41 40998.28 24086.69
LHS 2157 50011.22 40996.16 24097.69
LHS 2166 50015.5 40989.66 24104.41
LHS 221 49971.75 40999.25 24076.28
LHS 2217 50025.19 41035 24074.84
LHS 2233 50054.34 41006.03 24105.25
LHS 224 49977.44 40996.72 24078.53
LHS 2274 49993.22 41043.28 24071.06
LHS 229 49979.09 41001.63 24071.66
LHS 2314 50027.91 41049.03 24084.63
LHS 2335 50037.09 41010.34 24110.69
LHS 2337 49994.94 41051.25 24076.09
LHS 2363 49973.06 41047.25 24073.22
LHS 2405 49939.13 41030.56 24068.72
LHS 2412 50040.09 41047.28 24106.88
LHS 2429 50009.72 40998.38 24111.88
LHS 246 49966 41007.56 24076.78
LHS 2471 50003.97 41027.09 24103.69
LHS 2477 50052.81 41016.19 24131.94
LHS 2482 50007.75 41048.91 24101.28
LHS 2494 50020.53 41044.03 24110.09
LHS 250 49965.81 41009.34 24075.47
LHS 2541 50014.81 41048.97 24111.63
LHS 2552 50025.16 40998 24126.25
LHS 259 49977.38 41027.28 24057.09
LHS 262 49978.09 41007.88 24081.19
LHS 2651 49962.16 41045.38 24091.19
LHS 2661 50001.09 41031.72 24117.72
LHS 2691 49980.81 41050 24108.22
LHS 274 50020.81 41008.28 24091.75
LHS 2764a 49980.28 41039.13 24105.66
LHS 278 49979.09 41023.66 24075.09
LHS 2789 49950.66 41056 24096.22
LHS 2819 49954.5 41023.56 24091.56
LHS 283 49964.22 41014.59 24081.47
LHS 287 49986.03 41014.59 24088.5
LHS 2884 49963 41033.41 24106.78
LHS 2887 49977.66 41011.78 24110.72
LHS 2936 49953.31 41040.56 24105.5
LHS 295 50000.72 41018.47 24092.78
LHS 3006 49963.03 41014.09 24103.28
LHS 301 50013.84 41037.34 24096.38
LHS 302 49994.97 41038.19 24088.69
LHS 3057 49934.25 41035.03 24091.72
LHS 306 50015.09 41013.84 24107.97
LHS 317 50029.66 41012.03 24120.03
LHS 3262 49960.88 41003.84 24109.91
LHS 331 49960.59 41048.44 24084.34
LHS 336 50011.56 40990.78 24121.13
LHS 346 50023.97 41005.22 24133.97
LHS 351 49993.41 41044.88 24122.56
LHS 3549 49955.38 40991.13 24103.06
LHS 355 49986.09 41031.16 24114.72
LHS 3586 49902.91 41010.97 24081.84
LHS 3631 49893.38 41015.34 24073.34
LHS 369 49994.72 41011.34 24127.16
LHS 371 49975.38 41034.44 24122.63
LHS 380 49990.28 40991.75 24115.88
LHS 3877 49910.72 40995.91 24074.16
LHS 391 49969.09 41030.16 24126.38
LHS 411 49971.88 41008.59 24123.63
LHS 417 49966.69 41003.19 24109.91
LHS 450 49972.59 40992.81 24103.13
LHS 5072 49951.66 41000.16 24077.47
LHS 5287 49948.59 41033.19 24104.22
LHS 6128 49970.56 41003.31 24075.72
LHS 6197 50064.5 41030 24115.47
LHS 6282 49973.53 41024.78 24127.78
LHS 6309 49951.44 41018.13 24118.47
LHS 64 49908.31 40996.09 24094.19
Li Quang 49876.97 41021.84 24093.25
Loga 49905.22 41021.53 24062.94
Logoni 50054.22 41014.03 24122.28
Lokapuri 49912.22 41018.78 24106.94
Lopu Maid Fo 50044.28 41029.38 24121.69
LP 102-320 49924.38 41020.13 24108.22
LP 131-55 49959.66 41048.81 24087.31
LP 1-52 49935.06 41013.81 24071.72
LP 167-64 49977.66 41040.78 24069.41
LP 167-71 49973.84 41046.84 24065.72
LP 211-12 49987.03 41028.97 24063.63
LP 27-9 49914.59 41010.44 24072.59
LP 29-188 49917.38 41002.06 24054.78
LP 30-55 49958.44 40991.75 24084.28
LP 320-359 49986.25 41034.72 24098.44
LP 322-836 49981.56 41036.59 24107.03
LP 36-115 49943.31 41031 24055.22
LP 377-100 49992.56 41055.44 24102.44
LP 37-75 49957.75 41023.5 24071.34
LP 45-128 49915.72 41017.25 24091.09
LP 465-14 50060.75 41011.03 24110.16
LP 48-567 49917.94 40999.97 24079.44
LP 488-37 50013.56 41027.56 24073.06
LP 51-17 49924.94 40990.16 24064.72
LP 58-247 49960.75 41013.53 24059
LP 5-88 49957.72 41004.59 24081.97
LP 60-205 49953.03 41031.84 24054.63
LP 617-37 50007.28 41043.59 24130.5
LP 64-194 49963.34 41017.22 24088.78
LP 672-42 50012.78 41017.84 24106
LP 673-13 50018.16 41028.03 24105.41
LP 675-76 50012.22 41030.59 24116.59
LP 71-157 49932.66 41013.38 24096.97
LP 732-94 50018.28 41017.34 24106.03
LP 734-11 50021.94 41026.28 24114.63
LP 787-52 50020.41 40999.38 24090.78
LP 792-20 50026.53 41019.78 24109
LP 792-33 50039.81 41034.66 24112.72
LP 793-33 50031.88 41025.22 24116.25
LP 844-28 50021.13 40994.31 24091.25
LP 847-48 50019.06 40998.38 24100.22
LP 849-20 50063.72 41035.22 24106.06
LP 855-34 50018.63 41018.81 24138.38
LP 90-39 49966.75 41018.09 24065.91
LP 906-9 50028.44 41010.78 24111.56
LP 908-11 50027.84 41010.34 24121.94
LP 98-132 49958.22 41022.03 24100.41
LP Draconis 49897.06 41034.34 24089.5
LTT 10482 49923.81 41008.59 24063
LTT 12680 50016.09 41038.25 24070.03
LTT 12990 49984.44 41052.41 24075.34
LTT 15294 49900.31 41035.22 24098.59
LTT 16523 49912.34 40998.28 24079.06
LTT 16979 49887.75 41009.31 24052.44
LTT 3919 50035.03 41002.38 24110.59
LTT 4131 50046 41022.84 24112.84
LTT 4150 50046.47 41027.69 24111.97
LTT 4376 50039.5 41046.47 24114.63
LTT 4447 50053.06 41035.41 24128.16
LTT 4461 50034.63 41029.84 24120.66
LTT 4527 50034.94 41033.53 24122.28
LTT 4549 50040.72 41002.59 24132.16
LTT 4730 50007.19 41015.88 24114.84
LTT 4772 50035.78 41048.22 24131.53
LTT 4898 50028.06 41024.72 24132.72
LTT 5131 50024.28 41011.06 24137.38
LTT 5455 49998.06 41003.81 24122.97
LU Velorum 50034.88 40990.88 24109.31
Lucab Ku 49852.25 41033.28 24063.56
Luggerates 49878.19 41027.06 24041.06
Lugien Chabtani 49921.78 41042.63 24089
Luhman 16 49991.31 40985.59 24106.72
Luyten 674-15 50001.72 40987.28 24095.88
Luyten's Star 49991.56 40987.34 24094.75
Macomaneleng Mu 49884.59 41013.13 24076.25
Magec 49952.13 41021.16 24120.5
Maitaokona 49827.94 41018.19 24035.19
Maitis 49900.81 41003.06 24057.72
Malanquiya 49834.78 41015.09 24089.31
Malina 49936.81 41008 24119.41
Maljenni 50046.34 41023.72 24122
Manarato 49893.16 41049.94 24066.5
Manbai Chac Moco 50013.5 41017.09 24110.31
Mankob 49900.22 41006.91 24060.59
Mannheim 49843 41052.63 24068.66
Maranarinjhian Hsi 49887.66 41027.63 24098.06
Marasing 49895.97 41016.09 24093.84
Maraupol Bumbin 50067.5 41035.72 24109.84
Marditj 50017.44 41000.06 24114.38
Markanomovoy 49817.91 41011.72 24049.63
Marojini 49885.16 41019.47 24095.69
Marsinatani 49897.78 41025.34 24095.5
Maujinagoto 49907.53 41001.09 24085.44
Mbuthamovites 49852.19 41000.66 24057.09
MCC 858 49911 40989.94 24075.13
Megrez 49954.91 41054.56 24077.81
Melcior 50039.78 41050.25 24095.78
Meliae 49967.69 41034.53 24103.31
Midgcut 49970.38 40995.34 24118.16
Mildeptu 49999.13 40986.31 24101.72
Mildjarayuta 50050.94 41029.63 24113.84
Minawara 49884.97 41027.53 24044.41
Miola 49921 41009 24064
Miquich 49967.28 41004.13 24124.59
Mizar 49950.78 41053.84 24090.91
Mobokomu 49858.59 41005.09 24047.69
Mokojing 50058.44 41043.34 24104.78
Momoirent 50043.06 40998.53 24105.91
Morgor 49969.75 41024.53 24102.75
Moros 49939.03 41002.38 24073.69
Moscab Kutja 49889.34 41023.06 24091.53
Mu Nora 49869.91 41028.84 24080.5
Muango 49841.97 41013.53 24084.09
Mufrid 49983.88 41020.25 24116.09
Mullag 49985.5 41020.09 24085.81
Muncheim 49886.63 41022.56 24043.72
Nagariggam 50042.06 41022.88 24105.75
Nahundi 50013 41032.16 24091.72
Nakuma 49830.41 41019.19 24086.25
Nang Ta-khian 49966.78 41011.56 24098.66
Naraka 49950.91 41011.22 24099.47
50069.81 41117.19 24174.59
Neche 50048.69 40997.91 24091.91
Nemepawe 49857.41 41019.91 24061.59
Nener 49888 40999.16 24071.5
Ngardamayo 50024.53 41013.53 24068.78
Ngolitjali 49867.47 41023.06 24100.06
Ngoloki Anaten 49872.5 41018.81 24044.97
Nicobarese 49860.06 41014.91 24065.84
Njikan 49880.22 40988.66 24084.19
NLTT 26813 50050.56 41020.88 24116.81
NLTT 34715 49957.56 41051.53 24099.34
NLTT 46621 49941.19 41005.34 24109.81
NLTT 48502 49885.44 41012.13 24100.75
NLTT 50716 49894.03 41025.41 24062.94
NLTT 53889 49908.5 40992.69 24080.03
Nuenets 50033 41002.66 24133.31
Nuguynici 49852.69 41029.41 24091.16
Nuwang 49897.34 40985.59 24063.47
Nzam Cakua 49894.34 40993.5 24064.38
Nzambassee 49983.97 41018.06 24085.03
Okinoukhe 49873.44 40993.84 24063.34
Okuapang 49900.69 41037.81 24090.13
Olgrea 49956.88 41053.28 24098.63
Onduwatya 49865.06 41045.34 24066.28
Opala 49959.5 41020.25 24114.28
Ori 49958.72 41041.09 24107.44
OT Serpentis 49973.88 41015.34 24123.41
Ovid 49956.94 41020.16 24119.81
Pachanu 49824.78 41025.53 24049.25
Pan 49999.94 41025.03 24127.38
Pangluya 50012.19 41026.19 24088.41
Parcae 49976.88 41040.09 24088
Paul-Friedrichs Star 49936.84 41019.31 24113.78
Pemede 49896.56 41010.47 24078.84
Perendi 49932.44 41018.09 24093.13
Phra Zhan 50063.81 41041.06 24112.22
Pi-fang 49950.34 41007.84 24100.41
Piran 49860.59 41024.5 24091.03
Pliny 49989.63 41021 24091.5
Pollux 49991.72 40998.72 24074.88
Popon 49828.22 41005.84 24028.25
PPM 41187 49910.88 40983.06 24081.09
Privir 49823.94 41001.5 24082.13
Procyon 49991.22 40987.66 24095.81
Psamathe 49908.28 40992.34 24076.94
PW Hydrae 50050 41023.56 24098.78
Quiness 49938.53 41022.78 24080.06
Rabates 49832.88 40983.28 24055.66
Rahu 49941.22 41047.44 24104.75
Rakapila 49970.09 41018.63 24114.13
Ratri 49973.47 41055 24078.25
Rauratunab 49866.56 40996.03 24053.22
Rhea 50043.13 41007.59 24076.41
Rho Cancri 49994.34 41009.94 24074.81
Ross 1003 49980.69 41018.91 24093.03
Ross 1015 49978.91 41014.47 24108.03
Ross 104 49990.56 41004.69 24097.69
Ross 1051 49947.78 41029.5 24099.94
Ross 1057 49952.69 41011.19 24092.56
Ross 112 49957 41049.28 24071.66
Ross 128 49990.53 40994.44 24105.13
Ross 130 49981.09 41026 24124.75
Ross 210 49911.5 40995.06 24089.28
Ross 211 49861.28 41002.31 24074.78
Ross 318 49963 40989.25 24090.13
Ross 446 49999.22 41001.91 24098.47
Ross 447 49948.5 41037.47 24066.84
Ross 486 49999.66 41024.47 24123.91
Ross 490 49988.59 41008.5 24112.53
Ross 667 49814.47 40990.72 24055.81
Ross 695 50003.81 41005.03 24113.78
Ross 85 50002.38 41010.5 24085.13
Ross 860 49964.88 41004.28 24124
Ross 905 49989.47 41016.94 24097.78
Ross 93 49996.47 41019.56 24077.31
Ross 986 49984.75 40992.19 24085.75
Sak Chelmir 50040.78 41025.81 24124.78
Salarhul 49864.13 41031.34 24069.44
Samkyha 50051.97 41013.75 24103.78
Sanguru 49861.47 41027.31 24032.28
Seber 49811.13 40987.56 24073.78
Sekhemet 50018.19 41015.38 24075.78
Selebegua 50043.75 41046.13 24130.59
Seting 49927.28 40992.88 24098.5
Shama 49841.69 41034.75 24059.69
Shamash 50032.47 41013.28 24095.78
Shapash 50021.75 41016.81 24085.63
Shebayeb 49900.31 41040.72 24092.22
Sheela Na Gig 49960.06 41052.47 24092.91
Sigma Bootis 49970.53 41032.44 24119.41
Skeggiko O 50038.69 40996.94 24121.5
Slatus 50061.69 41020.19 24085.91
Sofagre 49930.78 41033.53 24074.84
Sokoji 50043.16 41023.88 24124.44
Song Te Tians 50025.09 41037.59 24087.78
Sopdu 49939.38 40992.13 24077.47
Stein 2051 49975.53 40987.44 24089.63
Styx 49960.69 41022.75 24111.03
Sudz 49975.13 41037.44 24075.75
Sukub Tungatis 49944.88 41050.97 24069.44
Sukuruaco 50054.47 41030.88 24118.69
Supen 49889.75 41046.53 24057.28
Suraci 49882.47 40994.34 24053.38
Surya 49946.53 41024.25 24110.41
Tabassapisi 49900.5 41022.34 24102.75
Taexalkoloine 49892.88 41042.22 24077.47
Taima Baijuhacmoora 49972.88 41041.59 24114.19
Taleachishvakhrud 49882.03 41042.38 24083.06
Taliesin 49982.06 41007.19 24079.72
Talitha 49979.88 41016.28 24069.88
T'ang Bumbain 49898.44 41014.97 24100.94
Taosha 49871.06 41003.78 24094.13
Tarasa 49825.22 41038.09 24048.31
Tatil 49907.16 41008.19 24082.41
Tau Bootis 49985.09 41033.78 24119.63
Tau-1 Hydrae 50024.59 41015.97 24079.16
Tefenhua 49923.97 41043.81 24061.03
Teng Yeh 49991.28 41013.44 24092.53
Test2 49984 40986 24105
Theta Cygni 49927.34 40999.16 24112.19
Theta Ursae Majoris 49977.41 41016.72 24075.53
Thosim Biamh 49925.44 41016.66 24081.69
Thoth 49986.94 41026.47 24080.19
Thottacahuan 49997.44 41015.91 24114.16
Thraskias 50031.72 41031.63 24103.34
Tiapalan 50011.03 41003.28 24114.16
Tiethay 49955.38 41052.09 24084.13
Tilian 49963.47 41007.31 24115.13
Tinia 49991.81 41033.72 24071.75
Tivertsi 49878.31 40987.03 24054.94
Tollan 49970.22 41005 24083.03
Trepin 50011.38 40995.56 24114.78
Tripu 49911.84 40994.28 24077.19
Tsetan 49872.25 41002.72 24070.28
Tsohodiae 49881.25 41015.97 24103.44
Tun 49937.03 41005.97 24087.47
Turmakul 49905.81 41049.25 24071.13
Tyche 50010.22 41028.97 24076.31
Tyr 49905.38 41006.25 24079.94
Udegoci 49915 41036.72 24050.5
V1090 Herculis 49940.06 41021.94 24118.47
V2151 Cygni 49921.25 40988.66 24099.41
V417 Hydrae 50046.66 41029 24084.88
V419 Hydrae 50047.63 41015.63 24107.78
V538 Aurigae 49970.75 40993.63 24068.56
V740 Cassiopeiae 49898.81 40992.16 24057.22
V886 Centauri 50030.16 40997.13 24131.97
V989 Cassiopeiae 49939.63 40991.78 24065.38
Vega 49963.09 40993.13 24114
Veneri 50020.69 41039.13 24125.09
Verboni 49886.28 41007.5 24044.66
Vetr 49925.94 40997.66 24106.47
VZ Corvi 50024.69 41035.44 24130.59
Wadjuk 49934.41 41034.84 24059.19
Wakarendians 49850.5 41020.28 24078.78
Wanggu 49852.28 41015.97 24065.41
Wathlanukh 49835.78 40990.25 24044.31
Wei Jung 49860.28 40999.28 24075.81
Wen Tsakimori 49886.69 41049.34 24057.59
Widjararappan 49854.16 41026.81 24083.22
Widjigarasir 49843.06 41030.75 24094.53
Wikmeang 49849.28 41005.81 24061.94
WISE 1506+7027 49977.63 40992.09 24102.56
Wolf 1409 49928.88 41014.81 24114.06
Wolf 1478 49994.5 41009.16 24128.88
Wolf 1481 49990.19 40998.38 24118.56
Wolf 248 49987.78 41045.31 24104.56
Wolf 294 49986 40989.94 24087.47
Wolf 359 49988.88 40991.47 24103.09
Wolf 369 50015.63 41035.38 24096.13
Wolf 393 50014.66 41034.44 24100.06
Wolf 417 49998.69 41027.06 24109.81
Wolf 424 49989.22 40998.28 24106.44
Wolf 437 49992 41011 24109.38
Wolf 46 49957.97 40984.88 24086.38
Wolf 485a 50007.91 41031.72 24132.28
Wolf 497 49985.13 41026.47 24116.97
Wolf 54 49945.09 40986.19 24077.06
Wolf 562 49986.47 40997.84 24120.56
Wosyra Pao 49996.53 41016.38 24091.06
Wu Gondru 49852.31 41008.16 24084.88
Wunian 49854.94 41003.38 24072.06
WX Ursa Majoris 49983.59 40999.16 24098.13
Wyrd 49973.38 41016.53 24101.06
Xelabara 49891.59 41051.06 24060.03
Xi Ursae Majoris 49987.66 41012.09 24095.06
Xi Wangkala 49849.34 41020.31 24075.16
Xolotl 49963.47 41028.5 24063.34
Yakan 49844.16 41030.94 24092.47
Yakawana 49881.91 41020.47 24073.72
Ya'Nomisiyaces 50026.34 40998.28 24095.31
Yanyan 49944.69 41027.41 24096.53
Yarigui 49912.44 40987.56 24079.16
Ye'kuapemas 49914.84 41029.63 24071.34
Yeru Bao Hinu 49892.47 40993.41 24071.16
Yoruba 49939 41020.84 24070.78
Yuggsanawyddis 49834.03 41052.03 24067.19
Yugusitanitou 49907.91 41043.59 24052.06
Zangi 50027.06 41040.69 24095.06
Zaraluvul 49980.13 41049.22 24104.19
Zenmaku 49894.53 41004.38 24042.28
Zeta Herculis 49963.66 41007.38 24121.25
Zombardgriti 49852.72 41016.41 24065.38
Zombo 49845.44 41015.38 24084.09
Zopiates 49839.94 41048.28 24071.13
Zosma 50001.06 41038.88 24089.16
Jata 49956.63 40872.47 24203.44
 
Last edited:

wolverine2710

Tutorial & Guide Writer
That looks suspiciously like we now have galaxy-centred coordinates, rather than Sol-centred.

Haven't checked it in any form, just posted it here asap. Hope we can still use it. Gonna check the data myself.

Edit: First check. Sol is not in it, but we can't visit it either, so perhaps thats the reason.
 
Last edited:

wolverine2710

Tutorial & Guide Writer
Thanks for sharing and of course all hail Michael Brookes.

Of course I share it here, you guys are doing the hard work ;-)
Double hail to Michael as he has send the list again. It was good that I PM-ed him again this morning. He had already PM-ed the list to a cmdr and expected the list would be shared. A commander seems to have forgotten to post it ;-( At least haven't seen anything.

Gonna send a PM to double check if the following is still true for the partial SB3 list. Yesterday I made a mistake about the list and he posted the following here
Michael brookes: That's not correct - the list was systems that have had economies attached to them."
 
Last edited:
Those are all 1/32 coordinates rounded to 2DP

Needs to be converted.

Thankfully 2dp is precise enough to distinguish between individual 1/32 coordinates.

and there are 2 sets in there with no names??

49980.16 41011.66 24100.22
50069.81 41117.19 24174.59
 
Last edited:
I've run some tests with my calculator/verifier on an oldish systems.json (with 551 systems), and I believe the 2-digit distance will not prohibit exact system coordinates. Unfortunately it uses a huge amount of memory: memory use is proportional to the square of the max. distance value used, and reducing the precision seemingly increased the memory use by a factor of 4-8 os so, and is very slow. Therefore it is not a very practical method, but I think it shows that the distances with just 2 fractional digits could still be useful.
 

wolverine2710

Tutorial & Guide Writer
Those are all 1/32 coordinates rounded to 2DP

Needs to be converted.

Thankfully 2dp is precise enough to distinguish between individual 1/32 coordinates.

and there are 2 sets in there with no names??

49980.16 41011.66 24100.22
50069.81 41117.19 24174.59

Don't shoot the messenger ;-)
I Double checked the PM and indeed the entries you mentioned have no star system name.
About converting. Didn't have time to check the list but do you mean we have to convert them so that SOL is again the centre?
Should you be able to do that, could you please post the converted list in perhaps TD CSV or TOR format here?
 
I've just produced (but not uploaded) maps based on that coordinate set. I first had to convert it from an ill-formed space-separated file into a CSV, by extracting the *last* three fields from the remainder.

Jata and Chara are rather a long way from the main pill; it's extremely unlikely that we'll be able to visit them, but we can use them as reliable external references.

There is a system called "Test2", which probably isn't meant to be there.

Ignoring Jata and Chara, the remaining systems can all be reached with a 22.35 ly jump range. As the intermediate systems are discovered, that will probably come down.

I'm happy to use whatever coordinate system ED does - it honestly doesn't matter where the centre is.
 
Last edited:
do you mean we have to convert them so that SOL is again the centre?

Nope - Just that say

10 Ursae Majoris 49985.03 41019.91 24065.91

Really is

10 Ursae Majoris 49985.03125 41019.90625 24065.90625

The first is simply the last rounded to 2dp.

The 1/32 discrete coordinates are still there - Just "hidden" as Michael for some reason rounded to 2dp.

(And I was most definitely not shooting the messenger:D - Just posting what I noticed)
 
Last edited:
Back
Top Bottom